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ABSTRACT 

In this work we study the Bloch space B, the space of complex-valued har- 

monic functions ] of a homogeneous tree with the property tha t  

If(u) - f(v)[ is bounded for all pairs of neighboring vertices u and v. This 

space can be identified with a Besov-Lipschitz space of functions on the 

boundary of the tree. The unit ball L/of  B is convex and compact under 

the compact-open topology. Thus it is the closed convex hull of its extreme 

points. This paper gives necessary conditions and sufficient conditions for 

a harmonic function to be an extreme point. These conditions are not 

definitive in general, but  they are for functions in the little Bloch space, 

tha t  is, those satisfying the property tha t  If(u) - f(v)] --* 0, as u and v 

approach the boundary. This parallels the classical case precisely. In the 

real-valued case, we obtain a complete description. We also characterize 

the support points of/,/. 

1. Introduction 

T h e  c la s s i ca l  t h e o r y  o f  B l o c h  f u n c t i o n s  in  t h e  o p e n  u n i t  d i sk  a n d  t h e  i n t e r e s t i n g  

c o n n e c t i o n s  b e t w e e n  t h e  B l o c h  s p a c e  a n d  o t h e r  f u n c t i o n  s p a c e s  w a s  t h e  m o t i -  

v a t i o n  for  t h e  s t u d y  [CC] o f  B l o e h  f u n c t i o n s  o n  t r ees .  T h e  a r t i c l e  [CC] is p a r t  
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of a series of papers (e.g. [BCCP], [BFP], [CCP], [CP]) aimed at studying the 

remarkable relationship between the hyperbolic disk and infinite trees. In this 

article we continue this analysis, focusing on the study of the extreme points of 

the unit ball of the Bloch space, and considering also its support points. 

We give a brief review of facts (cf. [ACP], [C2], [C3]) concerning the classical 

case which are relevant to our present work. 

THEOREM 1: Let f be analytic on A, the open unit disk. The following state- 

ments are equivalent: 

(1) As a function between the metric spaces (A,p) and (C,d), f satisfies 
d[f(z), f(w)] 

the Lipschitz condition with Lipschitz number t3f = SUpzCw p(z, w) ' 

where p is the hyperbolic distance and d is Euclidean distance. 

(2) f is uniformly continuous. 

(3) supze (1 - N 2 ) f ( z ) l  is  nite and equals 

(4) The set U ~ S - f o S(0): S con[ormal automorphism o[A}  constitutes a 

normal family. 

(5) The schlicht disks contained in the image of f have bounded radius. 

We shall use the tree analogue of (1) as the definition of Bloch function on a 

tree. The functions of our study, however, are harmonic: there is not as natural 

a definition of analyticity on a tree. Bloch harmonic functions on the disk have 

also been studied (e.g. cf. [C1]). 

We let B(A) be the space of Bloch functions on A and let Bo(A) be the 

subspace consisting of all Bloch functions f such that (1 -]z]2)If ' (z)[  ~ O, as 

Iz[ ~ 1, known as the l i t t le  Bloch space.  

An interesting classical result is the fact that B0(A)** is isomorphic to B(A). 

In [CC] we proved an analogous result for the tree case, using methods which are 

similar to those used in the classical case. 

Another classical result is the identification of B(A) with the Besov-Lipschitz 

space B~ In [2 (Theorem 3) we shall prove the tree analogue. 

An interesting set of problems arises when one studies the extreme points of 

the unit ball of B(A). These have been considered, for example, in [CW], [C3], 

and [B1]. One tool is the set of points E ( f )  = {z e A: (1 -[zI2)If ' (z)l  = 1}. It 

is easy to see that f is an extreme point if E ( f )  has limit points. (For example, 

f ( z )  = 3x/3z2/4 satisfies this condition.) For f C Bo(A), this is a necessary and 

sufficient condition. On the other hand, Bonk [B2] has proved that  the Ahlfors- 
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Grunsky function [AG] is an extreme point for which E( f )  has no limit points. 

Similarly, in the present paper, in order to study the extreme points of the unit 

ball of the Bloch space of a homogeneous tree, we shall define the "skeleton" 

of a function on a tree, whose complement plays a role similar to that  of E(f ) .  

Once again, this set yields a condition which is sufficient (Theorem 6) but not 

necessary (Example 2). For the little Bloch space, however, it is both  necessary 

and sufficient (Theorem 8). 

Before giving the specific findings of this research, we recall the notation and 

the main results of previous works. 

A t r e e  is a connected and simply-connected graph T = (V, E),  where V is the 

set of vertices, and E is the set of edges, which are pairs of distinct vertices. 

Two vertices v and w are called n e i g h b o r s  if there is an edge e = [v, w], and 

we write v ,,~ w. Two edges el and e2 are called n e i g h b o r s  if el A e2 is a single 

vertex. 

A p a t h  is a finite or infinite sequence of vertices Iv0, vl , .  �9 �9 ] such that  v~ ,.~ vk+ 1 

and vk-1 r vk+l, for all k. Equivalently, a pa th  may be thought of as a sequence 

of neighboring edges [e0, e l , . . .  ] (with ek = [vk, v~+l]) such that  ekNek+lNek+2 = 

0 for all k. An infinite pa th  is also called a ray .  A g e o d e s i c  is the union of two 

rays meeting only at their initial vertex. 

The condition for a graph to be a tree is equivalent to the following: 

Between any two distinct vertices there exists a unique finite path 

By abuse of terminology we will occasionally refer to a not-necessarily con- 

nected tree, by which we mean a disjoint union of (connected) trees. Some 

authors call this a fo res t ,  but we prefer not to introduce further terminology. 

We define the l e n g t h  of a finite pa th  Iv0, . . . ,  vn] to be n. 

A vertex which has exactly two neighbors is called flat ,  and a pa th  or ray is 

called f la t  if all its vertices, except possibly the first or last, are flat. A vertex 

which has exactly one neighbor is called t e r m i n a l .  We call an edge t e r m i n a l  if 

it contains a terminal vertex. 

If p is the pa th  [v = v0, v l , . . . , v n  = w] or [e0, e l , . . . , e n - 1 ] ,  we say that  the 

d i s t a n c e  d ( v , w )  f r o m  v to  w is n, the d i s t a n c e  d(v ,  en_ l )  f r o m  v t o  en-1  

is n - 1, and the d i s t a n c e  d ( e o , e n - 1 )  f r o m  eo t o  en-1  is n - 1. 

Let u, v be neighbors. Then the s e c t o r  determined by the ordered pair (u, v) 

is the set of all vertices w closer to v than to u, and the edges between them, 

hence, it is one of the two connected components of the complement of the edge 
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['U, V]. 

If d _> 2 is an integer, a tree is said to be h o m o g e n e o u s  o f  d e g r e e  d if 

each vertex has the same number d of neighbors, or equivalently, is in the same 

number d of edges. 

Let T = (V, E)  be a tree. A f u n c t i o n  on  T is a complex-valued function f 

on V. We use the notation f :  T ~ C. In w we shall introduce functions on the 

directed edges as well, denoting these by g: E -~ C. 

We recall the following definitions (cf. [CC]). 

Definition 1: Let T be a homogeneous tree of degree d, with d _> 2. 

(1) A function f :  T --* C is h a r m o n i c  if for every vertex v of T, f ( v )  = 

1_ ~-~,,,~,~ f (w) .  
d 

(2) A function f :  T ~ C is B loch  if ~3f = sups~ .  If(w) - f(v)[  < c~. 

If T is homogeneous of degree 2, it consists of a single geodesic, and a harmonic 

function on T is necessarily constant, so any results are trivial. For this reason, 

we shall assume that the degree of T is greater than 2. 

If f is a Bloch function, the number/~f, called the B lo ch  c o n s t a n t  of f ,  is its 

Lipschitz number, where the function is thought of as a map between the metric 

spaces (T, d) and the Euclidean complex plane: 

~3f = sup [ f ( v ) -  f (w) l  
~,#~ d(v, w) = ~~~sup If(v) - / ( w ) l .  

Let B, the B l o c h  space,  be the space of all Bloch harmonic functions on the 

homogeneous tree T. We define the l i t t l e  B l o c h  space,  B0, to be the subspace 

of B consisting of all the functions f such that the set 

{v e T: If(v) - f(w)[ _> e, for some w ,,~ v} 

is finite for all e > 0. 

Fix a vertex o of T. We recall from [CC] that,  as in the classical case, we have 

THEOREM 2: /~ is a complex Banach space under the norm defined by [[f[[ = 

If(o)l + Z~. 

Again, as in the classical case, the double dual of B0 is B ([CC]). 

We shall study the unit ball of B, with the aim of characterizing its extreme 

points. In w we completely characterize its support points. 



Vol. 94, 1996 EXTREME POINTS OF BLOCH SPACE 251 

Corresponding to a function in this unit ball, there is a certain subtree of the 

tree, called the skeleton, whose image lies in the open unit disk, and another set 

A, whose image lies in the unit circle. 

We shall see (Theorem 6) that  if the skeleton is empty, then the function is an 

extreme point, and in some cases (Corollary 1, Theorem 11, and Observation 2) 

- -  in particular if the function is real-valued - -  the converse holds. We shall 

also see (Theorem 12) that  the function is a support  point if and only if A is 

non-empty. 

Other criteria such as the structure of the skeleton (Theorem 9) and growth 

conditions (Theorem 10) are explored for determining when a function is an 

extreme point. 

We wish to express our deepest grati tude to Mitch Taibleson for patiently 

showing us how to relate the harmonic functions on the tree to functions on the 

boundary. 

2. T h e  B l o c h  space  as a B e s o v - L i p s c h i t z  space  

Before we begin the specifics of the study of the unit ball of the Bloch space, we 

wish to relate the Bloch space to a Besov-Lipsehitz space of functions defined on 

the boundary of the tree. We adopt the point of view of [T2]. 

Let o be a fixed vertex of a homogeneous tree T of degree d = q + 1. A b o u n d -  

a r y  po in t  of T is an equivalence class of rays any two of which differ by a finite 

number of vertices. In each class x there is a unique ray Ix - l ,  xo, x l , . . .  ] s tart ing 

at x-1  = o. We shall denote x as { x - l , X o , X l , . . .  }. Define the b o u n d a r y  of T 

as the set OT of boundary points of T. 

A measure # may be defined on OT as follows. Let v ~ o be a vertex at distance 

k + 1 from o. Then for Iv = {x  �9 OT: xk = v} let p(Iv)  = q-k .  Since Io = OT is 

the disjoint union of the sets Ivj, for j = 1 , . . . ,  q + 1, where v l , . . . ,  Vq+l are the 

neighbors of o, then #(OT)  = q + 1. 

We put a partial  ordering on T U OT as follows. Let v, w �9 T,  x �9 OT. Then 

w _< v if and only if Iv C I~, and w < x if and only if x �9 I~.  

Let A be the symbol for the greatest lower bound, so that ,  for example, w = 

w A x if x E I~.  For v E T, let Ivl = d(o, v) - 1, so that  #(Iv)  = q-lvl, for v # o. 

Since Io[ -- - 1 ,  then p(Io) = q + 1, whereas q-lol = q. 

Let u be an integrable function on OT with respect to p. Then u induces a 
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function qo on the tree by defining ~(v) -- ~-h-~)fl~ u d#. Then 

1 1 
(1) qa(v) = ~ ~ E ~(w), for v # o, and qo(o) - q + 1 E qo(w), 

"U3~,JV (m~V--  W'.~O 

where v -  denotes the (unique) neighbor of v closer to o. Since Iv = 

L[~~v,~r I~, we get the first formula as follows: 

q~ = qM E fl  udu=ql'l E q-M-lqo(w)'  
w ~ v ~ w ~ v -  w W ~ V ~ W ~ V -  

and the second formula is similar. 

A function qo on T satisfying (1) is called a m a r t i n g a l e .  

Notice that the martingale property is very similar to harmonicity. In fact, 

there is a 1 - 1 correspondence between the set of martingales {qo} and the set 

of harmonic functions {f} (cf. [T2]) in such a way that []f][~ = I]~]]~, where 

]]h[Ioo = SUPveT ]h(v)[ <_ oo. 

Given a martingale ~, we define the associated harmonic function f as follows. 

For v E T, if [X-l ,X0,. . . ,Xn] is the path from o to v, then 

k 
f(v) -- q - 1 Z q-J (xk_j) + 

j = 0  

Conversely, given a harmonic function f ,  the associated martingale qa is defined 

by qo(o) = f(o) ,  and 

l f v -  \ q f ( V ) - q  ( ) ) ,  f o r v r  
- q _ 1 

Let Xv: cOT ~ C be the characteristic function of Iv, and let S(cOT) be the 

linear space of functions on cOT generated by the set {Xv: v E T}. A linear 

functional on $(cOT) is called a d i s t r i bu t i on .  Integrable functions h on OT as 

well as measures v on cOT induce distributions by letting u(xv) be fI. hd# or 

f l~ dr,. 
Given a distribution u, the associated function on T given by ~(v) = 

u(x~,)/#(I,) is a martingale. Conversely, a martingale ~ determines a distri- 

bution u by u(xv) = qo(v)p(Iv). Therefore, there is also a 1 - 1 correspondence 
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between dis t r ibut ions and harmonic  functions. This  can be made  explicit by 

means  of the P o i s s o n  k e r n e l  function which is given by the formula  

Note t ha t  if x E Iv, then  

P ( x , v )  = q ~21~Avl-lvl 
q-~--i-u 

P ( x ,  v) = q ~ l  ql"l. 
t 7  

The  relat ionship between the dis t r ibut ion u and the corresponding harmonic  

funct ion f can be given as the P o i s s o n  i n t e g r a l  

f ( v )  = l o t  P ( x ,  v l u ( x l d p ( x ) .  

Cf. IT2] for details. Taibleson proves tha t  the same correspondence tha t  holds 

for the classical case - -  the relat ionship between harmonic  functions on the disk 

and dis t r ibut ions  on its bounda ry  - -  holds here. 

Let  f be a function on T. For k = 0, 1 , 2 , . . .  define the function fk on OT 

by fk (x)  = f ( x k ) ,  where x = { x - i ,  x0, x l , . . .  }, and let dk.f = f~ - yk-1.  With  

this nota t ion,  if ~ is the mar t inga le  associated with  the dis t r ibut ion u, then  

u = limk--.oo ~k (cf. IT2], (27)). 

If  v is a ver tex  with Ivl = k, then xk = v for all x E 1,. Since for all such v, 

p( /~)  = q -k ,  we have )a,p 
Ilfkllp ~ q-k[ f (v ) lP  , 

I 

for p > 0, and we define II/llp = supk Ilfkllp _< oc. Let LP(T)  = {f :  [I/lip < c~}. 

Let t ing  p --, oc, we see tha t  IlfkIl~ -- maxl.I--k If(v) l  and Ilflloo = s u p . ~ T  I f (HI .  

Observe  t h a t  ~y -- supk tldkflloo, since if v ,., w, then  I f (v )  - f ( w ) l  = l d J ( z ) t ,  

for some k and  for some x E OT. 

Let u be a dis t r ibut ion on 0 T  and let f be its Poisson integral. A c o n e  with  

ver tex  on OT can be defined (cf. IT2, w yielding a not ion of non- tangent ia l  

limit. The  following results can be found in IT2], (35-38): 

(a) If  u is an integrable function, then f converges to u non- tangent ia l ly  a.e. 

and Ilull~ = Ilfl[oo. 

(b) If  u is continuous,  then  the sequence {fk} converges uniformly to u. 

(c) If  1 < p < c~ and u C LP(OT), then  {fk} converges to u in L p. 
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(d) u is a Borel measure if and only if f E LI(T).  

(e) If 1 < p < oc, then u E LP(OT) if and only if f E LP(T). 

PROPOSITION 1: Let v and w be neighboring vertices. Then 

fo  [ P ( ~ , v ) - P ( ~ , w ) [ d # ( ~ ) =  2 q -  1. 
T q + l  

Proof'. Without loss of generality, we may let w = v - ,  where Iv[ = k. Observe 

that  P(~, v) > P(~, w) if and only if ~ �9 Iv. Thus 

or [p(5' v) - P(( ,  w)[d#(~) 

= f t  [P(~,v) - P(~ ,w) ld#(~) -  fOT_ , [P(~ ,v ) - -  P(~,w)]d#(~) 

= 2 jl _ _ jo v) _ 

But lOT P(~, - )d#(~)  is the constant function 1, so the second integral vanishes. 

q and P(~,w) = q qk-1 For ~ �9 Iv we have P(~, v) = q + 1 qk ~ . Since It(Iv) = 

q-k, this now yields 

fo  [P(~,v) - P(~,w)ldIt(~ ) = 2 q l (q k - qk-1)q-k = 2(q -- 1) T q +  q + l  1 

We now study Bloch functions on the tree in terms of sequences of functions 

on the boundary. First observe that  from the definitions it follows that  

dkf(x)  = ~oT(P(~, xk) -- P(~, xk_l))u(~)dp(~). 

Since ]~f = supk IIfkllo~, the proposition implies that  

~/< 2 ~ - 1 )  I,u,,~ - 2(q - 1) 
q + 1 11111oo. 

Furthermore, in order for equality to be attained, we must have a function u on 

0T  such that  ulI~ = ~ and ul(OT - Iv) = -,~, for some ~ �9 C and v �9 T. This 

yields an alternate proof of Theorem 1 of [CC]. 

We now define the Besov-Lipschitz spaces. 

Let u be a distribution on 0T, a > 0, 0 < p, s < oo, and let ~ be the martingale 

associated to u. Then define 

,, ,, / )  II II ~ k ~  �9 u p,, = q dkq O LP(OT) , 

kk=0 / 
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with the appropr ia te  modif icat ion for p or s infinite. Let  B~, s be the  space of all 

d is t r ibut ions  u such tha t  [[ul[~, 8 < oo. The  no rm on Bp~,8 is [[u[[~,~ + If(o)[.  The  

identification of all the  dis t r ibut ions which differ by  a cons tant  yields the  space 
"Gt (:X Bp,~ whose no rm is jus t  ][ [[p,8- We now observe t ha t  with a = 0 and p = s = c~, 

the  definition of [lul[~,8 is precisely supk,x [[dk~(x)l [. Now let f be the Poisson 

integral  of u. Then  the relat ion between f and ~o yields 

dkf (x)  - q - 1  k 
q 

j=O 

and 

dk~o(x) = qq~-I d~ 

This  in tu rn  yields 
~I -< 0 q + l  

Ilull ,  < 

This  proves the  following 

for k = 1 , 2 , . . . ,  

for k = 0. 

THEOREM 3: As Banach spaces, the Bloch space B and and the Besov-Lipschitz 

space B~ are  isomorphic. 

We define a metr ic  on OT by let t ing d(x, y) = q-lXhvl for x, y C 0T ,  x ~ y. 

For a > 0 we can show tha t  B~o,o o is the L ip-a  space of (OT, d). This  is similar  

to  Theo rem (2.2), Ch. VI, in [T1]. 

THEOREM 4: There  exists c > 0 such that u E B~o,~ i f  and  only i f  

lu(x) - u(y)l <_ clIulI~,~d(x,y) ~, 

for all x, y E OT. 

Proo~ Let ~o be the mar t inga le  associated with  u. Observe t h a t  dido(x) = di~(y) 

for i _< N = Ix A Yl- Thus  

k k 

- = [ d ,  v C x )  - = 

/=0  i = N + I  

[dido(x) - dido(y)]. 
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Since limk--.~ qOk = u, we see that  u(x) - u(y) = ~--~+1 [di~(x) - diqo(y)]. Since 

Ilulloo,~ = supk,~ tdkqO(x)lq k~, we have that  IdkqO(z)l < ilull~,~ q ~  - k s  for all k > 0 

and all z �9 OT, so that  

oo 2q - N~ 2 
C~ 

q~ - 1 I[ull~'~ q'~ - 1 I lul l~'~d(x'  y)% 
i=N+l  

So we have proved that  if u �9 B ~ , ~ ,  then lu(x) - u(y)[ < cJlull~,~d(x, y)% for 

all x, y �9 aT,  with c = 2/(q ~ - 1). 

On the other hand, if we assume that  l u ( x ) - u ( y ) l  <_ cd(x, y)a for some positive 

number c and all x, y �9 OT, but that  Ilull~,~ = ~ ,  then u is continuous, and 

for all N �9 N there exists x �9 OT and k 3, 0 such that  Idk~p(x)lq k~ > N.  By the 

continuity of u we get 

dkqo(x) = qk f i  u -- q k - 1 /  u = u(z) -- u(y),  
z k z k - -  1 

for some z �9 I~ k and y E I ~ _  1. Since Ixk C I~k_ x, we have d(z, y) <_ q - ( k - 1 )  

Thus 

g <_ Idk~(x)lq k~ <_ l u ( z ) -  u (y ) ld ( z , y ) -~q  ~ < cq ~. 

Since N was arbitrary, this yields a contradiction. | 

3. T h e  uni t  ball  o f  t h e  B l o c h  space  

Let L( be the unit ball of the Bloch space, that  is, the set of all harmonic functions 

f on T such that  If(o)[ + If(v)  - f (w)l  _< 1, for all pairs of neighboring vertices 

v, w E T, where o is a fixed vertex of T. Clearly/4 is a convex set. 

Beside the Banach space topology on B, we may also consider the compact-open 

topology. It  should be noted that  this is the topology of uniform convergence 

on compact subsets. Since a compact set of vertices is finite, a sub-basis for 

this topology is the set of functions which send a given vertex into a given open 

set in C. Clearly, then, convergence in this topology is equivalent to pointwise 

convergence. We next show that  b / i s  compact in this topology. 

THEOREM 5: U is compact in the compact-open topology. 

Proof." Since U is second countable, it is sufficient to show that  it is sequentially 

compact.  Let {f,~} be a sequence of functions in L/. We can find a converging 
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subsequence of {f~} and verify tha t  its limit function f is in/4:  for each vertex v, 

the set { fn(v)}  is bounded,  and thus has convergent subsequences. By induct ion 

on the distance of v from o and by a diagonalization process, we can find a 

subsequence which converges at all vertices. | 

Thus  by the Kre in -Mi lman  Theorem (cf. [R], p. 242) /4  is the closed convex 

hull of its extreme points. Our aim is to characterize the extreme points of /4 .  

Al though the problem is not completely resolved here - -  as it is also still unsolved 

in the classical case we obtain  many  part ial  results. 

Notice tha t  the extreme points of /4  must  have Bloch norm equal to one. Also 

f is an extreme point  of /4  if and only if the condit ion f = (g + h)/2, for g, h � 9  

implies tha t  f = g = h. Another  way of expressing this same condit ion is tha t  

f • k � 9  for k harmonic,  implies tha t  k is identically zero. This last s ta tement  

will be the one most  often used th roughout  this paper.  

Since most  of the s tudy  of a Bloch function on a homogeneous tree concerns 

the difference of its values at neighboring vertices, it is often convenient to look 

at a difference function defined on the edges. Since edges are unordered pairs, 

however, this difference is well-defined only up to sign. To overcome this difficulty 

we orient the edges. Tha t  is, if e = Iv, w] is an edge, we make a choice of one 

of its vertices to be the in i t i a l  v e r t e x  t(e) and the other  to be the t e r m i n a l  

v e r t e x  T(e). We then call e a d i r e c t e d  edge .  

A function f on T then induces a function g = f o T -- f o ~ on the set of 

oriented edges E.  Clearly f is Bloch if and only if the associated function g is 

bounded.  Notice tha t  f determines g and in tu rn  g, together  with the value of f 

at any one vertex, determines f .  (The function g resembles a derivative of f in 

this respect.) 

Given a vertex v, let W + be the set of all neighbors w of v which follow v. Tha t  

is, if T(e) = W, then ~(e) = v. Similarly, let W -  be the set of neighbors o f v  which 

precede v. Let f be a harmonic  function on T. Since the sum of the cardinalities 

of W + and W -  is d, then ~-~,~w+ ( f ( w )  - f ( v ) )  + ~ , c w -  ( f ( w )  - f ( v ) )  = O. 

Thus 

g(e)= ~ (f(w)-f(v))= ~ (f(v)-f(w))= ~ g(e). 
~[~)=v wew+ w e w -  ~(e)=v 

Hence g = f o ~- - f o t satisfies Kirchhoff 's  Law 

(2) Z g(e)= • g(e) 
~(~)=, ~(~)=~ 
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at each vertex v. 

From now on we shall mainly consider functions on the directed edges of a 

homogeneous tree. There are two points that  need to be addressed. 

First we choose once and for all the orientation to be the one which is outward 

from o. Tha t  is, if e = Iv, w] and d(o, v) < d(o, w), then L(e) = v and 7-(e) = w. 

So for example for v ~ o, the set W -  above consists of the single vertex v -  (in 

the notat ion of w and for v -- o, W -  is empty. 

Note tha t  ltfll = tf(o)l + Ilgll~r where It ll~ is the supremum norm for bounded 

functions of the edges. For simplicity of notation, in the future the subscript c~ 

will be omitted. 

The second point that  needs to be made is that  the map  f H g = f o T -- f o 

forgets the value f (o) .  In the s tudy of extreme points, shifting our focus from f 

to g, however, does not cause any loss of information, because of the following 

observation. 

If  f is an extreme point, then either f is a constant of modulus 1 or f (o )  = 

0: assuming 0 < If(o)[ < 1 and If(o)l + ~!  = 1, and letting f l  be the constant 

f(o) and f2 = ( f  - t f ( o ) l f l ) / ~ f ,  we obtain f = I f (o) t f l  + (1 - t f ( o ) l ) f 2  with If(o)[ 
Ilflll = ][f2H = 1, and f l ,  f2 distinct from f ,  so that  f is not an extreme point. 

On the other hand, if f is a constant of modulus 1 and h is any Bloch harmonic 

function such that  1 > Hf 4- hll = If(o) 4- h(o)l + Hhlll, where hi -- h o T -- h o t, 

then from If(o)[ = 1 it follows that  h(o) = 0 and hi = O. Thus h is identically 0, 

so f is an extreme point. 

Thus if f E B is an extreme point of the unit ball, since f is either a constant 

of modulus 1 or maps o to 0, setting aside the first case, we may ask only about  

extreme points of the unit ball of the space ( f  E 13[f(o) = 0}. 

We call a function g: E ~ C h a r m o n i c  if g satisfies Kirchhoff 's Law (2). 

Given such a function g, define a harmonic function f on the set of vertices 

as follows: For any vertex v, let [el , . . . ,e ,~] be the pa th  from o to v. Define 
n 

f ( v )  = ~-~k=l g(ek), SO tha t  f (o )  = O. Thus g = f o v - f o t. This shows that  

the set ( f  �9 13: f (o)  = 0} is in isometric 1-1 correspondence with the set B(E)  of 

bounded harmonic functions on E under the map f ~ g = f o r - f o L. Under 

this correspondence, the unit ball L/of  B with the normalization at o is identified 

with the set B1 = (g: E --, C Ig harmonic, ][gll -< 1}. Thus we are now studying 

the following: 

PROBLEM: Find the extreme points o f  the compact convex set B1. 
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An advantage of the shift of focus from f to g is that  the space B1 is independent 

of the specific choice of the fixed vertex o. Of course, a change in o determines a 

change in the orientation of a finite number of edges, and only changes the sign 

of the value of g on these edges. 

4. T h e  s k e l e t o n  o f  a n  e x t r e m e  point 

Definition 2: If W is an arbi trary tree, a vertex v is said to be h i d d e n  in W if 

there are no (doubly infinite) geodesics of W which pass through v. An edge is 

h i d d e n  in W if one of its vertices is hidden. 

Examples of hidden vertices are terminal vertices and fiat neighbors of terminal 

vertices. Notice that  an edge e is hidden in W if and only if it is hidden in the 

connected component C of W containing e. Furthermore e is hidden if and only 

if C - {e} has at most one infinite component. 

We shall denote by W # the not-necessarily connected subtree consisting of all 

non-hidden vertices and non-hidden edges. Note that  W # #  = W #. 

Fix a function g E B1 of supremum norm 1. Recalling that  A is the open unit 

disk, consider the subtree g - l ( A )  of T (possibly not connected), that  is, the set 

consisting of those edges e such that  Ig(e)l < 1, together with their vertices. 

Definition 3: Let S(g) = ( g - l ( A ) ) # ,  the subtree (possibly disconnected) of 

g - l ( A )  consisting of the non-hidden vertices and the non-hidden edges. We call 

S(g) the s k e l e t o n  of the function g. If f is the harmonic function on T such 

that  g = f o T -- f o 5, the set S(g) is also called the s k e l e t o n  of f .  

Let g E B1. If e is an edge, we say that  g(e) is d e t e r m i n e d  if whenever 

g = (gl + g2)/2, with gl,g2 E B1, it follows that  g(e) = gl(e) = g2(e). If X is a 

set of edges, we say that  g(X) is d e t e r m i n e d  if g(e) is determined for all e E X. 

The function g is harmonic on T, of course, but note that  it is not generally 

harmonic on S(g), as some of the edges may be missing. 

Let U(g) be the subtree (possibly not connected) consisting of the non- 

determined edges together with their vertices. Notice that  g is an extreme point 

if and only if U(g) is empty. 

The following result is straightforward. 

LEMMA 1: If [g(e)[ = 1 then g(e) is determined. 
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LEMMA 2: Given a vertex v, let el, �9 �9 ed be all the edges which have v as vertex. 

f f  g(ej) is determined for all j = 1 , . . . ,  d - 1, then g(ea) is determined. 

Proof" Let g = (gl + g2)/2, with gl,g2 C •1. Then  we have g(ej) = gl(ej) = 

g2(ej), for j = 1 , . . . , d -  1. Since g, gl,g2 are harmonic,  by Kirchhoff 's  Law it 

follows tha t  g(ed) = gl(ed) = g2(ed). | 

LEMMA 3: U(g) = U(g) # and V(g) C S(g). 

Proof: By L e m m a  2, U(g) cannot  contain a terminal  edge. Thus if e is any edge 

of U(g) in the connected component  C, then C - {e} must  be disconnected, but  

since U(g) contains no terminal  vertices, neither component  of C - {e} can be 

finite. Hence e is not  hidden. Thus  U(g) = U(g) #. 

By L e m m a  1 we obtain  tha t  U(g) C g - l ( A ) ,  so V(g) = U(g) # C ( g - l ( A ) ) #  

= s ( g ) .  , 

I t  follows immediately  tha t  

THEOREM 6: I f  the skeleton o fg  is empty, then g is an extreme point. 

We shall see in Corollary 1, Theorem 11, and in Observation 2 tha t  with some 

further conditions on g, the converse to Theorem 6 also holds. 

THEOREM 7: Given g E 131, if  there is a geodesic 3  ̀such that [g[ is bounded away 

from 1 on % then g is not an extreme point. 

Proof: By hypothesis,  we may assume that  there exists e > 0 such tha t  [g(e)[ _< 

1 - e  for all e E 3'. Let 7 -- {en}-~o~ �9 Label the edges of 3  ̀ so tha t  e - l , e o  

are the edges closest to o. Define the function h on E by sett ing h(e) = 0 for 

e ~ 7, h(en) = e for n _> 0, and h(e~) = - e  for n < 0. Then  h is harmonic  and 

g + h E B1. So g is not  an extreme point. | 

COROLLARY 1: Let g C B~. I f  the set [g(g- l (A)) [  is bounded away from 1 (for 

example, i f  the image of Igl is finite), then g is an extreme point if  and only if  

S(g) is empty. 

Proo~ If  S(g) is empty  then g is an extreme point by Theorem 6. Conversely, 

if S(g) is non-empty,  then since S(g) = S(g) # contains no hidden edges, it must  

contain a geodesic 3`. Since S(g) C g - l ( A ) ,  by the hypothesis  [g[ is bounded  

away from 1 on S(g),  hence on 3`. So by Theorem 7, g is not  an extreme point. 

| 
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As an immediate  consequence of Corollary 1, we note tha t  if g E ~1 is a 

function which vanishes at infinity, then g is an extreme point  if and only if S(g) 

is empty. But  for f E B0, the little Bloch space, the corresponding function g 

vanishes at infinity. Thus  we have 

THEOREM 8: Let f E I3o. Then f is an extreme point i f  and only if its skeleton 

is empty. 

Thus for functions in the unit  ball of the little Bloch space the skeleton com- 

pletely determines whether  a function is an extreme point,  just  as in the classical 

case the set E ( f )  is determinant  for f E B0(A). 

LEMMA 4: Let p = {en}~  be a flat ray in the skeleton of a function g E B1, and 

assume that supn [g(en)[ = 1. Then g(p) is determined. 

Proof." Assume g d: h E B1, for some harmonic  function h. Since by Lemma 1 

g is determined off its skeleton, h is identically 0 there. By the harmonic i ty  of h 

and the flatness of p, h(e~) = •  for all n E N. Since g + h E B1, this yields 

Ig(en)+h(el)l _< l. Thus  Ih(e,)l  2 < 1 - [g (en ) [  ~, for all n E N, which forces h(el) 

to vanish. Thus  h is identically 0 on p, and hence g(p) is determined. I 

THEOREM 9: Assume that each component of S(g) is a finite union of geodesics. 

Then g is an extreme point if  and only if  sup~e~ Ig(e)l = 1, for every geodesic 

3  ̀�9 S(g).  

Proof." From Theorem 7 it follows tha t  if g is an extreme point,  then for every 

geodesic 7 E S(g), Ig(3~)l cannot  be bounded away from 1. 

Conversely assume tha t  supee~ Ig(e)l = 1 for every geodesic 3' of S(g). Let C 

be a component  of S(g). Let Uc = U(g) A C. By the hypothesis,  C may  be 
k 

writ ten as Uj=l PJ u { e l , . . . ,  era}, where k _> 2, the pj are flat rays, and the ej 

are edges. If  there are at least two rays Pi,Pj such tha t  Ig(Pi)l and Ig(pj)I are 

bounded  away from 1, then there is a geodesic 3  ̀which is the union of Pi, Pj and 

a finite set of edges, and so Ig(3`)l is bounded  away from 1, contradict ing our 

assumption.  Thus  wi thout  loss of generali ty we may  assume tha t  sup Ig(Pj)] = 1 

for each j = 2 , . . . ,  k. In particular,  then, g(pj) is determined for j = 2 . . . .  , k, 

by L e m m a  4. Thus  Uc is contained in Pl U { e l , . . . ,  era}. By Theorem 6, U(g) = 

V(g) # and so Uc = U#c �9 But since ( p l U { e l  . . . .  ,era}) # = 0, we get Uc = 0. 

But U(g) is the union of the sets Uc over all components  C of S(g). Thus U(g) 

is empty  and so g is an extreme point. I 
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We now show that  the finiteness hypothesis on S(g)  of Theorem 9 cannot be 

dropped. 

E x a m p l e  1: Let T be a homogeneous tree of degree 3. We shall construct a 

harmonic function g on the edges of T, such that  if d(e, o) = n, then [g(e)[ = 

1 - 2 -n .  Notice that  this implies that  along any geodesic % the function Jg[ is 

not bounded away from 1. We shall then construct a non-zero harmonic function 

h such that  if d(e, o) = n, then [h(e)[ _< 2 -'~. Thus g + h E/~1, showing that  g is 

not an extreme point. 

We shall define g(e) by induction on d(e, o). Set g(e) = 0 for each edge e 

at o. Now assume that ,  for some positive integer k, g(e) has been defined and 

[g(e)[ -- 1 - 2  -d(e,~ whenever d(e ,o)  < k. Let el ,e2 be the two edges at distance 

k from o adjacent to some edge e at distance k - 1. We define g(el),  g(e2) 

applying Observation 1 below to a = g(e) and r = (1 + [a[)/2. 

To define the function h, choose one of the edges eo at o and define 

1 ifd(e,  eo) = d(e,o) ,  
h(e) = c2 -x-d(e'e~ where e = - 1  otherwise. 

Both g and h are harmonic and have the prescribed growth conditions. 

OBSERVATION 1: Given a complex  number  a and r >_ [a[/2, there exist  complex  

numbers  j31, j32 o f  modu lus  r whose sum is a. 

We see this by le t t ing j31,/32 be r , - r  i f  a = O, and otherwise be equal to 

re •176 where cos 0 = I_~. 

The following proposition allows us to analyze the conditions necessary for a 

function g to be an extreme point, by throwing away flat rays from the skeleton 

of g. 

PROPOSITION 2: Let  p be a fiat ray in S(g) .  Then g is an ex t reme  point  i f  and 

only  i f  g (S(g)  - p) is determined.  

Proofi To prove the proposition, we only need to show that  if g(e) is determined 

for each e E S(g)  - p then g(p) is determined. Let v0 be the start ing vertex of p. 

If el is the edge of p through v0, then by our hypothesis, the definition of S(g), 

and Lemma 1, we have that  for every edge e' of T through vo distinct from e, 

g(e')  is determined. Thus by Lemma 2 it follows that  g(ex) is determined. Now 

arguing inductively, let en, n E N, be an edge of p such that  g(en) is determined. 
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Let en+l be the edge of p sharing a vertex vn with en. Then g is determined at 

each edge at vn except possibly en+l. Again by Lemma 2 we have that  g(e~+l) 

is determined. | 

5. G r o w t h  conditions 

Up to now we have seen two techniques for studying the main question. For 

g E B1, if S(g) is empty, then g is an extreme point. If  the modulus of g is 

bounded away from 1 on a geodesic, then g is not an extreme point. In this 

section we shall consider functions g whose skeleton is the whole tree T (so that  

g is not necessarily an extreme point), but whose modulus is not bounded away 

from 1 on any geodesic (so that  g is not necessarily a non-extreme point). We 

shall see by example that  either possibility may occur. 

Throughout this section we let T be a homogeneous tree of degree d = q + 1, 

with fixed vertex o. 

Assume that  g is a harmonic function on the edges of T whose modulus is 

everywhere less than 1, but approaches 1 along each ray. We would like to find 

growth conditions on Igl for which g is necessarily an extreme point, or for which 

g is necessarily not an extreme point. 

Example 1 shows how a growth condition can lead to such information in the 

case d = 3. More generally, still with d = 3, assume that  g satisfies the condition 

that  Ig(e)l < 1 - c2 -n ,  0 < c < 1, for any edge e at distance n from o. The fact 

that  g is not an extreme point will follow from Theorem 10(1). 

In the other direction, we have the following example where g is an extreme 

point, yet S(g) is the entire tree. 

Example 2: Let d = 3. Let el ,e2, e3 be the edges touching o. Define g(et) = 
1 p2t~i/3 On each of the sectors determined by these edges, use Observation 1 to ~ 

define inductively g(e) such that  [g(e)[ = 1 - �89 -n  for any edge e at distance n 

from o, and such that  g is harmonic. Using Theorem 10(2) we will see that  g is 

an extreme point, although S(g) is the entire tree. 

This shows that  the growth of g along rays - -  and not just the supremum or 

the limit - -  may control whether or not g is an extreme point. This demonstrates 

the difficulty in getting a precise classification of the extreme points of the unit 

ball of the Bloch space. 



264 J.M. COHEN AND F. COLONNA Isr. J. Math. 

PROPOSITION 3: Let g be a harmonic function defined on the edges o f T  with 

[[g[] _< 1, and let el and e2 be neighboring edges touching o. Let a l  and a2 be 

the sectors determined by el and e2. Suppose that for j = 1, 2 there exists a 

harmonic function hj: T --+ C, not identically zero, such that [g(e) • hi(e)[ <_ 1, 

for each edge e in Tj = aj U {ej }. Assume that hj (ej) is real, j = 1, 2. Then 9 is 

not an extreme point. 

Proof'. Without loss of generality we may assume that  hi(el)  >_ 0 >>_ h2(e2) 

and that  h i (e l )  ~_ -h2(e2).  Choose a �9 (0, 1] so that ah l ( e l )  = -h2(e2).  

Then define the function h on the edges of T by hiT1 = ahl,  hiT2 = h2, and 

hiT - (T1 U :/'2) = 0. Observe that  h is harmonic since h(el) + h(e2) = 0, and 

that [g + hi _< 1. Thus g is not an extreme point. | 

In the proposition, the hypothesis hj(ej) real may be replaced by the more 

general condition that  there exist c �9 R with c r 0 such that Chl(el) = h2(e2). 

TItEOREM 10: Let g be harmonic on T, with [[g[[ < 1. Denote by L the set of 

limit points of 

{(1 -[g(e)DWd(~ e �9 E } .  

(1) / f i n f L  > 1/q, then 9 is not an extreme point. 

(2) / f s u p L  < 1/q 2, then g is an extreme point. 

Proof." To prove (1), first observe that if ~ E [0,1] with a < infL,  then the 

set of edges {e E E: (1 - [g (e ) [ )  1/d(~ < a} is finite. So assuming 1/q < a < 

inf L, there exists a positive integer N such that whenever d(o, e) > N,  we have 

(1 - [g(e)[) 1/d(~ > c~, that  is, [g(e)l < 1 - ad(o,e). Let T1 be a branch of the 

tree rooted at o. Defihe the function H1 on T1 by Hi(e) = q-d (o , e ) .  Then H1 is a 

positive harmonic function on 7'1 and Hi(e) + ]g(e)l _< 1, for all but finitely many 

e in T1. Thus there exists a constant c E (0, 1) such that  cHl(e) + [g(e)[ <_ 1, 

for all edges e. Setting hi = cH1 we get that [g + hl[ _< 1 on T1. Extend hi to 

an arbitrary harmonic function on T. Now letting T2 be a different branch of T 

rooted at o, we may construct a harmonic function h2 on T2 similarly, and apply 

Proposition 3 to see that  g is not an extreme point. 

To prove (2), assume supL < 1/q 2, and let a be a constant such that supL < 

a < 1/q 2. Then there exists g �9 N such that (1 - [g(e ) [ )  1/d(~ < a, whenever 

d(o, e) >_ N.  Let h be a harmonic function such that [g • h I _< 1. Given any 

edge Co, let k = d(o, co). From the harmonicity of h we see that  for each n �9 N 
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there exists an edge e~ such that  d(eo, en) = n,  d(o, en)  = n + k and Ih(en)l  >_ 

q-~[h(eo)l. Also [g(e~)l >_ 1 -  a ~+k, for n > Y -  k. Now I g ( e ) +  h(e)[ <: 1 implies 

[g(e)] 2 + ih(e)] 2 <__ 1. So 1 - 2 a k a  '~ + a 2n+2k + q-~, Ih(eo)[ 2 _< 1. Thus 

ih(eo)]  < q2n(2   n _  2n+ k) < 

for all n _> N - k. Since q2a < 1, this implies that  Ih(eo)l = 0. Thus h vanishes 

identically and g is an extreme point. 1 

It  is not clear what happens in the case of intermediate growth. The simplest 

case possible is that  of a homogeneous tree of degree 3, and a harmonic function 

g satisfying the relation Ig(e)l = 1 - 3 -d(~ These conditions determine g up 

to an automorphism of the tree and multiplication by a complex constant of 

modulus 1. Unfortunately, we do not know if g is an extreme point. Thus we 

have a test case for which we do not know the answer. 

6. T h e  r e a l - v a l u e d  c a s e  

Throughout  this section we shall deal with real-valued harmonic functions in B1 

on a homogeneous tree T. We characterize those functions which are extreme 

points of B1. It  turns out that  they are exactly the functions whose range is 

contained in the set { - 1 ,  0, 1} and for which the skeleton is empty. 

In the following example we show that  there exists a real-valued harmonic 

function which goes to 1 in absolute value along every ray of a homogeneous tree 

of degree 3, but which is not an extreme point. 

E x a m p l e  3: Let e l , e 2 , e 3  be the edges touching o. We define a real harmonic 

function g recursively as follows. Let g(el)  = - 1 / 2  and g(e2) = g(e3) = 1/4. So 

g has been defined on a finite subtree which contains terminal edges, but with 

no flat vertices. Now assume that  e is a terminal edge of the subtree in which g 

has already been defined. We shall extend g harmonically to both  "children" of e 

and to both  children of one of e's children. The tree of definition of the extended 

function has again terminal edges, but no flat vertices. The construction goes as 

follows: First assume that  g(e)  = a > 0. Let e', e" be the two edges further out 

from e, and let e 1'', e 2" be the two edges further out from e". Then define g(e ' )  = 

1+a2 , g (e" )  _ 1-a~ ,g(el), ,,, = _  3+a4, g(e~) - 1+3a4 �9 In the case that  g(e)  = - a  < O, 

define all values to be the negatives of those given above. Where previously the 
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absolute value at the terminal edge had been a, now the terminal edges have 

absolute values greater than or equal to _k~_, since ~ < ~ < 3+a 4 " 

Given any ray, let (en)  be a sequence of (not necessarily consecutive) edges 

on the ray each of which is terminal as in the above construction. This means 

skipping at most every other edge in the ray, and also that  

1 + 3lg(e,)l 
Ig(e.+l)l > 

4 

l+3a~ with al  1 Then Consider the sequence defined recursively by a,,+l = a = ~" 

an = 1 - �89 (3)" .  Hence [g(en)[ _> 1 - 5 (3) n" Thus [g(en)[ ~ 1, proving that  

sup~ep Ig(e)[ = 1 for any ray p. 

On the other hand, letting (en} be the set of all edges of any ray from o, and 
3+b~ noting that  the sequence bl = 5, bn+l = ~ satisfies the relation bn+2 = 4 , 

we see that  ]g(e,~)[ < bn. But bn = 1 - 1 1 _ ~ ,  so [g(e,)[ _ < 1 - ~ .  Thus g is not an 

extreme point, by Theorem 10(1). 

In order to prove the main result of this section, Theorem 11, we need some 

preliminary tools. 

LEMMA 5: Assume that k is a natural number, and a, b l , . . . , b k + l  E [ -1 ,  1] 
v 'k+l  b. V'k+l are such that  a = L_~j=I J. Le t  ~fj = min([bj1,1 - [ b j l  }. Then z..j=l J -> 

min{[a[, 1 - [al}. 

P r o o f  In this proof we use the following notation: if x E R let [xJ represent the 

greatest integer less than or equal to x, and let } = x -  LxJ e [0,1). Observe that  if 

x > 0, then Ixl = x > ~, while i fx  < 0, then Ix] = - x  = - ( [ x J  + 1 ) + 1 - ~  > 1 - ~ .  

Thus Ix[ > min(~, 1 - ~}, for any x e ~L 

Note first that  in the cases a = 0, • the result is trivially true. Also, replacing 

each bj and a by their negatives, if necessary, we may assume that  a > 0. So we 

take a e (0, 1). 

Reindex the sequence (bj } so that  

[ -1 ,  - 5) whence ~f i = 1 + bj for j = 1 , . . . ,  M1, 

[0, 5) whence ~fj = bj for j = MI + 1 , . . . ,  M:,  

bj e [ -  5,0) whence 5j = - b j  for j -- M2 + 1 , . . . ,  Ms, 

[�89 1] whence ~f i = 1 - bj for j -- M3 + 1 , . . . ,  k + 1. 

v--M2 ~f , Thus a = A - B - N  where A = ?---,j=l J B = )-'~j>M2 ~fi, and N = M I + M a - k .  

In particular, then, N = L A - B J  and a = A - B, so that  ] A - B  I > m in (a ,  l - a } .  

Hence 
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k + l  

Z ~j = A + B > [ A -  B I > m i n { a , l - a } .  
j = l  

This completes the proof. | 

COROLLARY 2: Assume that  k is a natural number, and a, b l , . . . ,  bk+l E [ -1 ,  1] 
X-~k+l are such that a = z_~j=lbj, and 0 < e _< min{lal, 1 -  lal}. For j  = 1 , . . . , k  

define 6j = minCe - (~1 + " "  + 6j-1), IbsI, 1 - IbsI). T h e n ,  - (~1 + � 9 1 4 9  + 6k) _< 
min{lbk+ll, 1 - [bk+l[}. 

k �9 Proof We need to show that  e < ~5=1 ~5+mm{Ibk+ll, 1-[bk+l[}.  Observe that  

if, for any index Jo, we have 650 = e -  (61 + . - .  + 65o-1), then 65 = 0 for all j > Jo 

and the assertion is trivial. So we may assume that  65 = min{lbsI , 1 - IbsI} for 
�9 . ., - -  ~'~k+l 6" 

all j e {1, k}. Thus it is sufficient to prove that  min{la[, 1 - lal} < ~5=~ ~, 

defining 8k+1 = min{lbk+l[, 1 - Ibk+al} .  The assertion now follows at once from 

Lemma 5. | 

THEOREM 11: Let T be a homogeneous tree of  degree d and let g E B1 be a 

real-valued function�9 Then g is an extreme point//'and only i fS (g )  = I~ and the 

image ofg is contained in the set 

{ -1 ,  0, 1} for d odd, 

R = {-1,  1} for d even. 

Proof'. Assume that  the image of g is not contained in the set { - 1 ,  0, 1}. Choose 

an edge e.  with g(e.)  ~ 0, :t:1. By harmonieity there is an adjacent edge e** such 

that  g(e**) ~ 0, +1. Without  loss of generality, we may assume that  o is their 

common vertex. We shall use Proposition 3 to prove that  g is not an extreme 

point. It  is thus sufficient to define a harmonic function h. on the sector ~r. 

determined by e. ,  yielding by symmetry  the definition of a harmonic function 

h** on the sector determined by e**. 

Set h.(e.) = min{[g(e.)[, 1 - [ g ( e . ) [ }  ~ 0. Recursively, assume that  we have 

defined h.(e) such that  h.(e) < min{[g(e)l , 1 - lg(e)]}, for all e E a .  at  distance 

less than n from e. ,  for some positive integer n. Let e0 be an edge at distance 

n -  1 from e. ,  and let el,  e2 , . . . ,  ed-1 be the neighbors of eo at distance n. 

Set k = d -  2. We wish to construct h.(e5) so tha t  h.(ej) < 

min{lg(es)[, 1 - [g(es)[}, j = 1 , . . . ,  k + 1, and (to make h.  harmonic) h.(eo) = 

~_k+l h.(ej). Set a = g(eo), e = h.(eo), and bj = g(es), j = 1, k + 1. Then 1 " ' ' '  
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setting h.(ej) = m i n { e -  ( h . ( e l ) + - . . + h . ( e j - 1 ) ) ,  tbjl, 1-Ib j l}  for all j = 1 , . . . ,  k, 

and h,(ek+l) = r - (h . (e l )  + - - - +  h.(ek)) > O, we obtain that  h . (ek+l)  < 

min{Ibk+ll, 1 - tbk+l ]} ,  by Corollary 2. 

By induction, we have now defined h, harmonic on a ,  U {e.}. We can extend 

h. arbitrarily to a harmonic function on all of T. We have that  Ig + h. I < 1 on 

a .  U {e.}. Similarly there is a harmonic function h** on T with Ig + h**l < 1 on 

a** U {e**}. By Proposition 3, g is not an extreme point. 

Next assume that  the image of g is contained in the set { -1 ,  0, 1}. Then g is 

an extreme point if and only if the skeleton of g is empty by Corollary 1. 

Finally we need to observe that  if d is even, then an extreme point cannot 

take on the value 0. Let e l , . . . ,  ed be all the edges at some vertex v. Since 

7~.,-(ej)=v g(ej) = Y~(e~)=v g(ej), there must be an even number of vanishing 

g(ej). Thus if g(e) = 0, by induction we can construct a geodesic through e on 

which g is identically 0. So by Theorem 7, g is not an extreme point. II 

It  is straightforward to construct a real extreme point g satisfying the 

conditions of Theorem 11. 

7. Support points and further remarks 

Recall that ,  given a complex topological vector space X and a subset A of X,  a 

point x E A is called a support point of A if there exists a continuous linear 

functional L such that  LIA is non-constant and Re L(x) = max~cA Re L(y). In 

the case of X = C and A a closed convex polygon (together with its interior), the 

support  points are precisely the points of the boundary of the polygon, whereas 

the extreme points are its vertices. In general, however, an extreme point is not 

necessarily a support  point. In this section we shall characterize the support  

points for X = B and A = B1, and, in fact, we shall see that  there are extreme 

points which are not support  points. 

Let X be a locally convex space, and let A be a compact subset of X. Given 

a continuous linear functional L on X, the set of support  points of A associated 

with L is a nonempty compact subset of A. Hence it has extreme points, by 

the Krein-Milman Theorem. Using the tinearity of L it is easy to see that  any 

extreme point of this subset of A is actually an extreme point of A. Since/~ is 

locally convex even under the compact-open topology, the set of support  points 

of any continuous linear functional yields an extreme point. 
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In Theorem 12 we characterize the support  points of B1. For a function g 

on E,  let A(g) be the set of edges e such that  ]g(e)] = 1. We now get the 

following theorem, which is a precise analog of the result of M. Bonk [B1] for 

Bloch functions on the unit disk. 

THEOREM 12: The support points orB1 are precisely those functions g such that 

A(g) is non-empty. 

Proo~ We shall use the sequence of transformations (X,~)~eH, introduced in 

[CC]. For convenience, we modify its definition to make it a t ransformation on 

functions of edges, instead of functions on vertices. 

Let En be the set of edges both of whose vertices have distance ~ n from o. 

For g E B, define )c~g as follows: 

First set x~giEn = giEn. Then, if e ~ En, let e r be the element of En closest 

to e, and set )Cng(e) -- q-d(~'~')g(er). It  is easy to see that  

(1 ) ) /ng  is harmonic, 

(2) ( x ~ g  - g ) I E ~  = O, 

(3) IIx~gll = IlglE~ll. 
Now let L be any linear functional on B which is continuous with respect to 

the topology of pointwise convergence. Given g E B, let {rn} be an arbi trary 

sequence of complex numbers and define gn = r=(x=g - g). Notice that  by (2) 

above, g~ approaches 0 pointwise. Thus rn(Lx~g - Lg) = Lg~ goes to 0. But 

in order for this to be true for any possible sequence {r~}, it must be true that  

(Lxng - Lg) is 0 for all sufficiently large values of n. This proves the following: 

LEMMA 6: Let L be any linear functional on B which is continuous with respect 

to the topology of  pointwise convergence, and let g E B. Then there exists some 

N E N such that Lg -- L)c~g for all n >_ N.  

We may now proceed with the proof of the theorem. Assume first that  g E HI 
has the property that  A(g) r •. Choose e E A(g), and define L: B -+ C by 

Lh = g(e)h(e). Then for all h E/~1, we have R e L h  _< 1, but Lg = 1. So g is a 

support  point of B1. 

On the other hand, let g E ~1 be such that  for all e E E,  Ig(e)[ < 1. Let L 

be any functional as in the s tatement  of the lemma such that  Re Lg > 0. By 

Lemma 6, we have Lg = Lxng  for all n sufficiently large. Now let c = I[)/ngi[ 

which, by (3) above, is [[giEni[, a positive number less than 1 by our assumption, 

since En is a finite set. In particular, then, the function gl = c -1 )~g  is an element 
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of ~ 1 ,  and has the property that Re Lgl = c - 1  ReLxng  = c - 1  Re Lg > ReLg.  

Thus g cannot be a support point, completing the proof of the theorem. | 

As a consequence of Theorem 12, we now see that Example 2 yields an extreme 

point which is not a support point. 

Since the subspace W of real-valued functions in B1 is closed and convex, the 

extreme points that we found in Theorem 11 are precisely the extreme points 

of W. Thus by the Krein-Milman Theorem, every element of W is the limit of 

finite linear combinations of these extreme points. Since the values that these 

extreme points take on at each edge are - 1 ,  0, +1, it is clear that  each element 

of W has the form ~ o  Cng,~ where each gn is an extreme point of W and {cn} 

is a sequence of positive numbers summable to 1. 

Let g E B1. Then the functions hi = Reg, h2 -- Img  are in W. Thus we can 

write hi = ~-~o angn and h2 = ~-~o bngn, where some of the coefficients may 

be zero to allow for the same set of gn. Letting an = an + ib,~, we can write 

g = ~ o  a~gn. This proves 

PROPOSITION 4: Let g E B1. Then there exist real extreme points gn o[ W 

(which are described in Theorem 11) and complex numbers an, with non-negative 
O 0  O 0  

real and imaginary parts, such that ~-~o an = 1 + i and such that g = ~-~o ang,~. 

OBSERVATION 2: Assume that g E B1 can be described by g = ~-~k o a,~gn where 

the g,~ are as above and k E N. Then the range ofg  is finite, since it is contained 

in the set of all sums ~-~,0 k anen where e~ is 1, 0 or --1. In particular [g[ is bounded 

away from 1 on S(g). So by Corollary 1, we see that g is an extreme point i / and  

only i f  S(g) is empty. 

It would be interesting to see what role the coefficients an play in the general 

case in determining whether or not a function g is an extreme point. 

[AG] 

[ACP] 
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